Thursday, March 22, 2012

MAKALAH BIOLOGI UMUM I (Fotosintesis)


BAB I
PENDAHULUAN
A.    Latar belakang
Anabolisme adalah reaksi pembentukan molekul sederhana menjadi molekul yang kompleks. Reaksi anabolisme merupakan peristiwa sintesis atau penyusunan sehingga memerlukan energi, dan dibentuk reaksi endergonik. Contoh reaksi anabolisme di antaranya adalah fotosintesis atau sintesis karbohidrat dengan bantuan energi cahaya matahari, kemosintesis dengan bantuan energi kimia.
Fotosintesis adalah suatu proses biokimia yang dilakukan tumbuhan untuk memproduksi energi terpakai (nutrisi) dengan memanfaatkan energi cahaya. Fotosintesis juga dapat di artikan proses penyusunan atau pembentukan dengan menggunakan energi cahaya atau foton. Sumber energi cahaya alami adalah matahari yang memiliki spektrum cahaya infra merah (tidak kelihatan), merah, jingga, kuning, hijau, biru, nila, ungu dan ultra ungu (tidak kelihatan).
Hampir semua makhluk hidup bergantung dari energi yang dihasilkan dalam fotosintesis. Akibatnya fotosintesis menjadi sangat penting bagi kehidupan di bumi. Fotosintesis juga berjasa menghasilkan sebagian besar oksigen yang terdapat di atmosfer bumi. Organisme yang menghasilkan energi melalui fotosintesis (photos berarti cahaya) disebut sebagai fototrof. Fotosintesis merupakan salah satu cara asimilasi karbon karena dalam fotosintesis karbon bebas dari [[CO2]] diikat (difiksasi) menjadi gula sebagai molekul penyimpan energi. Cara lain yang ditempuh organisme untuk mengasimilasi karbon adalah melalui kemosintesis, yang dilakukan oleh sejumlah bakteri belerang.


B.     Rumusan masalah
1.      Apa yang dimaksud dengan anabolisme?
2.      Apa yang dimaksud dengan fotosintesis?
3.      Apa yang dimaksud dengan kemosintesis?
C.    Tujuan
1.      Untuk mengetahui apa itu anabolisme.
2.      Untuk mengetahui apa itu fotosintesis.
3.      Untuk mengetahui apa itu kemosintesis.














BAB I
PEMBAHASAN
A.    ANABOLISME

Anabolisme adalah suatu peristiwa perubahan senyawa sederhana menjadi senyawa kompleks, nama lain dari anabolisme adalah peristiwa sintesis atau penyusunan. Anabolisme memerlukan energi, misalnya : energi cahaya untuk fotosintesis, energi kimia untuk kemosintesis.
Anabolisme dibedakan menjadi dua bagian :
A.    Polomerisasi, yaitu penyusunan zat organik sederhana menjadi zat organaik kompleks, contohnya pada pembentukan protein dari asam amino, pembentikan amilum dari glukosa.
B.     Asimilasi, yaitu proses pembentukan zat organik dari zat anorganik.
Proses asimilasi masih dibagi menjadi dua :
1.      Asimilasi Carbon (C) = pembentukan karbohidrat. Pembentukan karbohidrat dengan bantuan cahaya disebut dengan fotolisintesis, kemosintesissedangkan dengan bantuan reaksi kimia disebut dengan kemosintesis. Jadi perbedaan utama antara kemosintesis dengan fotosintesis adalah terletak pada energi luar.
2.      Asimilasi Nitrogen (N), yaitu pembentukan protein yang terjadi pada organel sel ribosom.



B.FOTOSINTESIS
Fotosintesis merupakan sintesis yang memerlukan cahaya (fotos = cahaya; sintesis = penyusunan atau membuat bahan kimia). Fotosintesis adalah peristiwa pembentukan karbohidrat dari karbondioksida dan air dengan bantuan energi cahaya matahari. Secara sederhana, reaksi fotosintesis yang melibatkan berbagai enzim dapat dituliskan sebagai berikut:
Fotosintesis terjadi di dalam kloroplas. Kloroplas merupakan organel plastida yang mengandung pigmen hijau daun (klorofil). Sel yang mengandung kloroplas terdapat pada mesofil daun tanaman yang disebut palisade atau jaringan tiang dan sel-sel jaringan bunga karang yang disebut spons.

Kloroplas tersusun atas bagian-bagian sebagai berikut:
a) Stroma ialah struktur kosong di dalam kloroplas, merupakan tempat glukosa terbentuk dari karbondioksida.

b) Tilakoid ialah struktur cakram bertumpuktumpuk, yang terbentuk dari pelipatan membran dalam kloroplas, dan berfungsi menangkap energi cahaya dan mengubahnya menjadi energi kimia.

c) Grana ialah selubung tangkai penghubung tilakoid.
Klorofil merupakan pigmen utama yang terdapat pada tumbuhan yang berfungsi menyerap cahaya radiasi elektromagnetik pada spektrum kasat mata. Klorofil dapat dibedakan menjadi klorofil a dan klorofil b. Klorofil a mampu menyerap cahaya merah dan biru keunguan. Klorofil a sangat berperan dalam reaksi gelap fotosintesis. Sedangkan, klorofil b merupakan klorofil yang mampu menyerap cahaya biru dan  merah kejinggaan. Di dalam kloroplas, selain klorofil juga terdapat pigmen karotenoid, antosianin, dan fikobilin. Jadi, hanya tumbuhan yang dapat melakukan fotosintesis karena mengandung kloroplas pada daunnya. Oleh karena itu, tumbuhan merupakan produsen makanan (karena dapat menghasilkan makanan dengan bantuan cahaya matahari), dan disebut juga organisme autotrof (auto = sendiri; trophic = makanan), yaitu organisme yang dapat membuat makanan sendiri.

Proses reaksi fotosintesis dalam tumbuhan tinggi dibagi menjadi dua tahap, yaitu reaksi terang dan reaksi gelap. Untuk mengetahui bagaimana proses kedua reaksi tersebut, mari cermati uraian berikut ini.

a.      Reaksi terang
Pada tahap pertama, energi matahari ditangkap oleh pigmen penyerap cahaya dan diubah menjadi bentuk energi kimia, ATP, dan senyawa pereduksi NADPH. Proses ini disebut tahap reaksi terang. Atom hidrogen dari molekul H2O dipakai untuk mereduksi NADP+ menjadi NADPH, dan O2 dilepaskan sebagai hasil samping reaksi fotosintesis. Reaksi ini juga dirangkaikan dengan reaksi endergonik, membentuk ATP dari ADP + Pi. Dengan demikian, reaksi terang dapat dituliskan dengan persamaan:
Pembentukan ATP dari ADP + Pi, merupakan suatu mekanisme penyimpanan energi matahari yang diserap kemudian diubah menjadi bentuk energi kimia. Proses ini disebut fosforilasi fotosintesis atau fotofosforilasi. Pada reaksi terang yang terjadi di grana, energi cahaya memacu pelepasan elektron dari fotosistem di dalam membran tilakoid. Fotosistem adalah tempat berkumpulnya beratus-ratus molekul pigmen fotosintesis. Aliran elektron melalui sistem transpor menghasilkan ATP dan NADPH. ATP dan NADPH dapat terbentuk melalui jalur non siklik, yaitu elektron mengalir dari molekul air, kemudian melalui fotosistem II dan fotosistem I. Elektron dan ion hidrogen akan membentuk NADPH dan ATP. Oksigen yang dibebaskan berguna untuk respirasi aerob. Pusat reaksi pada fotosistem I mengandung klorofil a, disebut sebagai P700, karena dapat menyerap foton terbaik pada panjang gelombang 700 nm. Pusat reaksi pada fotosistem II mengandung klorofil a yang disebut sebagai P680, karena dapat menyerap foton terbaik pada panjang gelombang 680 nm.


b.      Reaksi gelap (reaksi tidak tergantung cahaya)

Disebut juga siklus Calvin-Benson. Reaksi ini disebut reaksi gelap, karena tidak tergantung secara langsung dengan cahaya matahari. Reaksi gelap terjadi di stroma. Namun demikian, reaksi ini tidak mutlak terjadi hanya pada kondisi gelap. Reaksi gelap memerlukan ATP, hidrogen, dan elektron dari NADPH, karbon dan oksigen dari karbondioksida, enzim yang mengkatalisis setiap reaksi, dan RuBp (Ribulosa bifosfat) yang merupakan suatu senyawa yang mempunyai 5 atom karbon.
Reaksi gelap terjadi melalui beberapa tahapan, yaitu:
1.      Karbondioksida diikat oleh RuBp (Ribulosa bifosfat yang terdiri atas 5 karbon) menjadi senyawa 6 karbon yang labil. Senyawa 6 karbon ini kemudian memecah menjadi 2 fosfogliserat (PGA).
2.       Masing-masing PGA menerima gugus pfosfat dari ATP dan menerima hidrogen serta e- dari NADPH. Reaksi ini menghasilkan PGAL (fosfogliseraldehida).
3.       Tiap 6 molekul karbon dioksida yang diikat dihasilkan 12 PGAL.
4.       Dari 12 PGAL, 10 molekul kembali ke tahap awal menjadi RuBp, dan seterusnya RuBp akan mengikat CO2 yang baru.
5.      Dua PGAL lainnya akan berkondensasi menjadi glukosa
6.      Fosfat. Molekul ini merupakan prekursor (bahan baku) untuk produk akhir menjadi molekul sukrosa yang merupakan karbohidrat untuk diangkut ke tempat penimbunan tepung pati yang merupakan karbohidrat yang tersimpan sebagai cadangan makanan.


C.    KEMOSINTESIS
Kemosintesis adalah sintesis senyawa organik dengan menggunakan energi kimia  yang berasal dari oksidasi dari bahan inorganik sederhana.
Tidak semua tumbuhan dapat melakukan asimilasi C menggunakan cahaya sebagai sumber energi. Beberapa macam bakteri yang tidak mempunyai klorofil dapat mengadakan asimilasi C dengan menggunakan energi yang berasal dan reaksi-reaksi kimia, misalnya bakteri sulfur, bakteri nitrat, bakteri nitrit, bakteri besi dan lain-lain. Bakteri-bakteri tersebut memperoleh energi dari hasil oksidasi senyawa-senyawa tertentu.
Bakteri besi memperoleh energi kimia dengan cara oksidasi Fe2+ (ferro) menjadi Fe3+ (ferri). Bakteri Nitrosomonas dan Nitrosococcus memperoleh energi dengan cara mengoksidasi NH3, tepatnya Amonium Karbonat menjadi asam nitrit dengan reaksi:
Nitrosomonas
(NH4)2CO3 + 3 O2 ———————> 2 HNO2 + CO2 + 3 H20 + Energi

Nitrosococcus

a.        Sintesis Lemak
Lemak dapat disintesis dari karbohidrat dan protein, karena dalam metabolisme, ketiga zat tersebut bertemu di dalarn daur Krebs. Sebagian besar pertemuannya berlangsung melalui pintu gerbang utama siklus (daur) Krebs, yaitu Asetil Ko-enzim A. Akibatnya ketiga macam senyawa tadi dapat saling mengisi sebagai bahan pembentuk semua zat tersebut. Lemak dapat dibentuk dari protein dan karbohidrat, karbohidrat dapat dibentuk dari lemak dan protein dan seterusnya.

a.1. Sintesis Lemak dari Karbohidrat :

Glukosa diurai menjadi piruvat ———> gliserol.
Glukosa diubah ———> gula fosfat ———> asetilKo-A ———> asam lemak.
Gliserol + asam lemak ———> lemak.

a.2. Sintesis Lemak dari Protein:

Protein ————————> Asam Amino
protease
Sebelum terbentuk lemak asam amino mengalami deaminasi lebih dabulu, setelah itu memasuki daur Krebs. Banyak jenis asam amino yang langsung ke asam piravat ———> Asetil Ko-A.
Asam amino Serin, Alanin, Valin, Leusin, Isoleusin dapat terurai menjadi Asam pirovat, selanjutnya asam piruvat ——> gliserol ——> fosfogliseroldehid Fosfogliseraldehid dengan asam lemak akan mengalami esterifkasi membentuk lemak.
Lemak berperan sebagai sumber tenaga (kalori) cadangan. Nilai kalorinya lebih tinggi daripada karbohidrat. 1 gram lemak menghasilkan 9,3 kalori, sedangkan 1 gram karbohidrat hanya menghasilkan 4,1 kalori saja.

b.       Sintesis Protein
Sintesis protein yang berlangsung di dalam sel, melibatkan DNA, RNA dan Ribosom. Penggabungan molekul-molekul asam amino dalam jumlah besar akan membentuk molekul polipeptida. Pada dasarnya protein adalah suatu polipeptida.
Setiap sel dari organisme mampu untuk mensintesis protein-protein tertentu yang sesuai dengan keperluannya. Sintesis protein dalam sel dapat terjadi karena pada inti sel terdapat suatu zat (substansi) yang berperan penting sebagai “pengatur sintesis protein”. Substansi-substansi tersebut adalah DNA dan RNA..
Hasil akhir dari fotosintesis Oksigen yang sangat di perlukan bagi kehidupan manusia untuk bernafas. Di Indonesia, Oksigen terbesar di hasilkan dari hutan hutan yang masih lestari. Hutan tersebut akan menghasilkan Oksigen yang banyak sebagai salah satu manfaat hutan.















BAB III
PENUTUP
Kesimpulan
Anabolisme adalah suatu peristiwa perubahan senyawa sederhana menjadi senyawa kompleks, nama lain dari anabolisme adalah peristiwa sintesis atau penyusunan.
Anabolisme dibedakan menjadi bagian yaitu : polimerisasi dan asimilasi
Fotosintesis adalah suatu proses biokimia yang dilakukan tumbuhan untuk memproduksi energi terpakai (nutrisi) dengan memanfaatkan energi cahaya.
Kemosintesis adalah sintesis senyawa organik dengan menggunakan energi kimia  yang berasal dari oksidasi dari bahan inorganik sederhana.


No comments:

Post a Comment